Monday, 26 December 2016

trigonometry

Hi friends this my first blog.I will maintain interesting posts in it.kindly bear me.
 In my first post i will introduce the trigonometric formulas and ratios which i know.




All of the trigonometric functions of an angle θ can be constructed geometrically in terms of a unit circle centered at O.
Trigonometry (from Greek trigōnon, "triangle" and metron, "measure"[1]) is a branch of mathematics that studies relationships involving lengths and angles of triangles. The field emerged in the Hellenistic world during the 3rd century BC from applications of geometry to astronomical studies.[2]
The 3rd-century astronomers first noted that the lengths of the sides of a right-angle triangle and the angles between those sides have fixed relationships: that is, if at least the length of one side and the value of one angle is known, then all other angles and lengths can be determined algorithmically. These calculations soon came to be defined as the trigonometric functions and today are pervasive in both pure and applied mathematics: fundamental methods of analysis such as the Fourier transform, for example, or the wave equation, use trigonometric functions to understand cyclical phenomena across many applications in fields as diverse as physics, mechanical and electrical engineering, music and acoustics, astronomy, ecology, and biology. Trigonometry is also the foundation of surveying.
Trigonometry is most simply associated with planar right-angle triangles (each of which is a two-dimensional triangle with one angle equal to 90 degrees). The applicability to non-right-angle triangles exists, but, since any non-right-angle triangle (on a flat plane) can be bisected to create two right-angle triangles, most problems can be reduced to calculations on right-angle triangles. Thus the majority of applications relate to right-angle triangles. One exception to this is spherical trigonometry, the study of triangles on spheres, surfaces of constant positive curvature, in elliptic geometry (a fundamental part of astronomy and navigation). Trigonometry on surfaces of negative curvature is part of hyperbolic geometry.
Trigonometry basics are often taught in schools, either as a separate course or as a part of a precalculus course.


 
In this right triangle: sin A = a/c; cos A = b/c; tan A = a/b.

If one angle of a triangle is 90 degrees and one of the other angles is known, the third is thereby fixed, because the three angles of any triangle add up to 180 degrees. The two acute angles therefore add up to 90 degrees: they are complementary angles. The shape of a triangle is completely determined, except for similarity, by the angles. Once the angles are known, the ratios of the sides are determined, regardless of the overall size of the triangle. If the length of one of the sides is known, the other two are determined. These ratios are given by the following trigonometric functions of the known angle A, where a, b and c refer to the lengths of the sides in the accompanying figure:
  • Sine function (sin), defined as the ratio of the side opposite the angle to the hypotenuse.
\sin A=\frac{\textrm{opposite}}{\textrm{hypotenuse}}=\frac{a}{\,c\,}\,.
  • Cosine function (cos), defined as the ratio of the adjacent leg to the hypotenuse.
\cos A=\frac{\textrm{adjacent}}{\textrm{hypotenuse}}=\frac{b}{\,c\,}\,.
  • Tangent function (tan), defined as the ratio of the opposite leg to the adjacent leg.


The hypotenuse is the side opposite to the 90 degree angle in a right triangle; it is the longest side of the triangle and one of the two sides adjacent to angle A. The adjacent leg is the other side that is adjacent to angle A. The opposite side is the side that is opposite to angle A. The terms perpendicular and base are sometimes used for the opposite and adjacent sides respectively. Many people find it easy to remember what sides of the right triangle are equal to sine, cosine, or tangent.
The reciprocals of these functions are named the cosecant (csc or cosec), secant (sec), and cotangent (cot), respectively:
\csc A={\frac  {1}{\sin A}}={\frac  {{\textrm  {hypotenuse}}}{{\textrm  {opposite}}}}={\frac  {c}{a}},
\sec A={\frac  {1}{\cos A}}={\frac  {{\textrm  {hypotenuse}}}{{\textrm  {adjacent}}}}={\frac  {c}{b}},
\cot A={\frac  {1}{\tan A}}={\frac  {{\textrm  {adjacent}}}{{\textrm  {opposite}}}}={\frac  {\cos A}{\sin A}}={\frac  {b}{a}}.
\tan A=\frac{\textrm{opposite}}{\textrm{adjacent}}=\frac{a}{\,b\,}=\frac{a}{\,c\,}*\frac{c}{\,b\,}=\frac{a}{\,c\,} / \frac{b}{\,c\,}=\frac{\sin A}{\cos A}\,.

2 comments:

  1. Hi, Looks like you are a child just started learning uploads. Keep on learning more and try to improve your editing and formatting skills. Good luck.

    ReplyDelete