Hi friends in my first POST i have introduced trigonometry. Now in this POST i will explain the formulas and some problems for better understanding.
1)
W.OUGHTERED INTRODUCED NOTATIONS SIN FOR SINE AND COS FOR COSINE
SIN2A=2SINA.COS A
DERIVATION;
SIN
(A+A) =SIN A COS A+COS A SIN A (SINCE SIN(A+B)=SIN A COS B+COS A SIN B)
=2SINA COS A…
COS
2A=COS2A-SIN2A=2 COS2A-1
DERIVATION;
COS
2A=COS2A-SIN2A
=COS2A-(1-COS2A)
=COS2A-1+COS2A
=2COS2A-1…
SIN3A=3SINA-4SIN3A
DERIVATION
SIN
(2A+A)
=SIN2ACOSA+COS2A+SIN A
=2SIN
ACOS2A+ (1-2SIN2A) SIN A
=2SIN
A (1-SIN2A) + (1-2SIN2A) SIN A
=2SINA-2SIN3A+SINA-2SIN3A
=3SINA-4SIN3A…
SOME TRIGONOMETRIC RATIOS.
00
|
300
|
450
|
600
|
900
|
|
SINE
|
0
|
½
|
1/√2
|
√3/2
|
1
|
COSINE
|
1
|
√3/2
|
1/√2
|
½
|
0
|
TANGENT
|
0
|
1/√3
|
1
|
√3
|
ND
|
COTANGENT
|
ND
|
√3
|
1
|
1/√3
|
0
|
CO SECANT
|
ND
|
2
|
√2
|
2/√3
|
1
|
SECANT
|
1
|
2/√3
|
√2
|
2
|
ND
|
FOR BETTER UNDERSTANDING OF USING FORMULAS I
CAN SOLVE SOME PROBLEMS FOR YOU.
1) 2 SIN15.COS15
SOLUTION;
2SINACOSA=SIN2A
=2SIN (15) =SIN30=½
2) COS215-SIN215
SOLUTION;
COS2A=COS2A-SIN2A
=COS2(15)=COS 30=√3/2
2)JOHN BERNOULI GAVE TRIGONOMETRIC FORMULAE SIN2A=2SIN A.COS A.
No comments:
Post a Comment