Monday, 26 December 2016

Hi friends in my first POST i have introduced trigonometry.  Now in this POST i will explain the formulas and some problems for better understanding.



SIN2A=2SINA.COS A
DERIVATION;
SIN (A+A) =SIN A COS A+COS A SIN A    (SINCE SIN(A+B)=SIN A COS B+COS A SIN B)
                =2SINA COS A…
COS 2A=COS2A-SIN2A=2 COS2A-1
DERIVATION;
COS 2A=COS2A-SIN2A
             =COS2A-(1-COS2A)
             =COS2A-1+COS2A 
             =2COS2A-1…
SIN3A=3SINA-4SIN3A
DERIVATION
SIN (2A+A)
=SIN2ACOSA+COS2A+SIN A
=2SIN ACOS2A+ (1-2SIN2A) SIN A
=2SIN A (1-SIN2A) + (1-2SIN2A) SIN A
=2SINA-2SIN3A+SINA-2SIN3A
=3SINA-4SIN3A…
SOME TRIGONOMETRIC RATIOS.

00
300
450
600
900
SINE
0
½
1/√2
√3/2
1
COSINE
1
√3/2
1/√2
½
0
TANGENT
0
1/√3
1
√3
ND
COTANGENT
ND
√3
1
1/√3
0
CO SECANT
ND
2
√2
2/√3
1
SECANT
1
2/√3
√2
2
ND

FOR BETTER UNDERSTANDING OF USING FORMULAS I CAN SOLVE SOME PROBLEMS FOR YOU.
1)       2 SIN15.COS15
SOLUTION;
2SINACOSA=SIN2A
=2SIN (15) =SIN30=½

2)       COS215-SIN215
SOLUTION;
COS2A=COS2A-SIN2A
=COS2(15)=COS 30=√3/2

1)  W.OUGHTERED INTRODUCED NOTATIONS SIN FOR SINE AND COS FOR COSINE


2)JOHN BERNOULI GAVE TRIGONOMETRIC FORMULAE SIN2A=2SIN A.COS A.

No comments:

Post a Comment